very high electrical conductivity. An experimental and theoretical investigation of this is in progress.

Acknowledgments.—The use of the IBM 7094 computer at the M.I.T. Computation Center is gratefully acknowledged. We are very grateful to Professor Schäfer for his kindness in supplying the crystalline material.

> Contribution from the Department of Chemical Engineering, The University of Texas, Austin, Texas

# The Structure Refinement of La<sub>2</sub>Te<sub>3</sub>, a Th<sub>3</sub>P<sub>4</sub> Type Structure<sup>1</sup>

BY W. L. COX, H. STEINFINK, AND W. F. BRADLEY

#### Received July 30, 1965

The thorium phosphide structure, Th<sub>3</sub>P<sub>4</sub>, occurs widely in the compounds of the lanthanides with tellurium, sulfur, phosphorus, bismuth, and others. The various cube edges are 8 to 10 Å., the space group is I43d, and there is only one variable parameter. This type of structure was first discussed by Meisel<sup>2</sup> and subsequently by Zachariasen<sup>3</sup> in relation to the compound Ce<sub>2</sub>S<sub>3</sub>. Kripyakevich<sup>4</sup> gave a detailed description of the structure in terms of the articulation of the polyhedra occurring in it. Carter<sup>5</sup> reviewed the  $Th_3P_4$ structure from the standpoint of electrostatic energy and valence bond considerations and found that the xparameter of  $1/12}$ , the idealized value for the single variable positional parameter, produces an unstable ionic structure in Ce<sub>2</sub>S<sub>3</sub> and that a value of approximately 0.04 corresponds to a minimum in the electrostatic energy calculation. He concluded that a compound with a Th<sub>3</sub>P<sub>4</sub> structure and an anion position of  $1/_{12}$  is essentially not ionic in nature, even though the bond distances obtained on the basis of this value are equal to the sum of the ionic radii.

The structure can be visualized as being made up of two kinds of anion tetrahedra surrounding a single cation. Both tetrahedra have a  $\overline{4}$  axis of symmetry; one tetrahedron being large and elongated and the other being rather flat. With an anion parameter of  $1/_{12}$ , the Th-P distances are all equal, but as the value drops below  $1/_{12}$ , the large tetrahedron becomes longer and the flat tetrahedron smaller and less flat. The importance of this structure in the rare earth compounds prompted us to undertake a single crystal investigation to determine the exact value of the positional parameter

(4) P. I. Kripyakevich, Sov. Phys. Cryst., 7, 556 (1963).

of the 16-fold position of the ion in space group  $I\overline{4}3d$ ; all other positions are fixed by symmetry.

#### **Experimental Section**

Samples for this determination were obtained from specimeus which had been previously prepared during the investigation of the lanthanum-tellurium phase diagram.6 Several crystals of irregular shape were selected from reacted batches of desired analyzed composition. The crystal used for data collection had dimensions of 0.11 mm. and 0.037 mm. at its widest and narrowest limits. The lattice constant for La2Te3 had previously been determined from powder diffraction data as 9.619 Å., and the value obtained from a Weissenberg film was in agreement with it. Flahaut<sup>7</sup> reports a value of 9.627 Å. for this composition. The crystal was mounted on a single crystal orienter and the diffraction data were collected using Zr-filtered Mo radiation with a scintillation counter and pulse height discrimination. The linear absorption coefficient of  $La_2Te_3$  for Mo K $\alpha$  is 262 cm.<sup>-1</sup> and  $\mu R = 1.8$  when an average radius of 0.07 mm. is used for this crystal; no absorption corrections were made on the measured intensities.

There are  $5^{1/8}$  formula weights of La<sub>2</sub>Te<sub>8</sub> in the unit cell and  $10^{2}/_{3}$  sites of the equipoints 12(a) of I43d are occupied by La, while Te is in 16(c), xxx; the single, variable, positional parameter and two isotropic temperature factors were determined using a full-matrix least-squares procedure with unit weights assigned to the structure factors. A test with two anisotropic temperature factors for La indicated essentially spherical symmetry. Approximately 100 general *hkl* reflections were collected because they overdetermine the problem sufficiently. The atomic scattering factors for lanthanum and tellurium were corrected for dispersion. The final discrepancy coefficient is 0.040 for the observed reflections listed in Table I, and Table II lists the parameters of the structure. The discrepancy factor, *R*, was

TABLE I

OBSERVED AND CALCULATED STRUCTURE FACTORS FOR La2Te3

| h  | k | l | Fobs | Fcal | h  | k | . 1 | Fobs  | Fcal | h  | k | l | Fobs | F <sub>cal</sub> |
|----|---|---|------|------|----|---|-----|-------|------|----|---|---|------|------------------|
| 4  | 0 | 0 | 75   | 75   | 3  | 2 | 1   | 765   | 799  | 5  | 5 | 2 | 585  | 576              |
| 12 | 0 | 0 | 562  | 536  | 5  | 2 | 1   | 1.59  | 161  | 7  | 5 | 2 | 493  | 463              |
| 16 | 0 | Ó | 275  | 302  | 7  | 2 | ī   | 480   | 507  | 11 | 5 | 2 | 227  | 214              |
| 3  | 1 | 0 | 1052 | 1123 | 9  | 2 | 1   | 611   | 646  | 8  | 6 | 2 | 167  | 172              |
| 5  | 1 | 0 | 159  | 148  | 11 | 2 | 1   | 171   | 195  | 7  | 7 | 2 | 372  | 358              |
| 7  | 1 | 0 | 281  | 266  | 4  | 3 | 1   | 530   | 560  | 11 | 7 | 2 | 272  | 273              |
| 9  | 1 | 0 | 215  | 214  | 6  | 3 | 1   | 367   | 379  | 6  | 3 | 3 | 587  | 468              |
| 13 | 1 | 0 | 303  | 283  | 8  | 3 | 1   | 224   | 218  | 10 | 3 | 3 | 196  | 203              |
| 2  | 2 | 0 | 151  | 145  | 12 | 3 | 1   | 380   | 376  | 5  | 4 | 3 | 261  | 266              |
| 4  | 2 | 0 | 590  | 588  | 5  | 4 | 1   | 643   | 651  | 7  | 4 | 3 | 487  | 514              |
| 10 | 2 | 0 | 159  | 156  | 7  | 4 | 1   | 241   | 237  | 9  | 4 | 3 | 325  | 326              |
| 12 | 2 | 0 | 243  | 233  | 9  | 4 | 1   | 182   | 194  | 6  | 5 | 3 | 292  | 294              |
| 5  | 3 | 0 | 317  | 303  | 11 | 4 | 1   | 276   | 271  | 8  | 5 | 3 | 172  | 194              |
| 7  | 3 | 0 | 125  | 118  | 6  | 5 | 1   | 253   | 275  | 10 | 5 | 3 | 388  | 390              |
| 11 | 3 | 0 | 168  | 162  | 8  | 5 | 1   | 546   | 542  | 7  | 6 | 3 | 405  | 422              |
| 13 | 3 | 0 | 225  | 208  | 10 | 5 | 1   | 247   | 223  | 9  | 6 | 3 | 190  | 182              |
| 4  | 4 | 0 | 165  | 161  | 7  | 6 | 1   | 212   | 189  | 8  | 7 | 3 | 443  | 449              |
| 6  | 4 | 0 | 440  | 436  | 11 | 6 | 1   | 292   | 297  | 10 | 7 | 3 | 334  | 353              |
| 8  | 4 | 0 | 365  | 362  | 8  | 7 | 1   | 181   | 177  | 9  | 8 | 3 | 296  | 293              |
| 10 | 4 | 0 | 296  | 281  | 10 | 7 | 1   | 193   | 166  | 4  | 4 | 4 | 942  | 1069             |
| 12 | 4 | 0 | 220  | 226  | 9  | 8 | 1   | 153   | 149  | 8  | 4 | 4 | 404  | 414              |
| 7  | 5 | 0 | 490  | 494  | 11 | 8 | 1   | 249   | 249  | 12 | 4 | 4 | 381  | 361              |
| 9  | 5 | 0 | 485  | 516  | 4  | 2 | 2   | 722   | 733  | 7  | 5 | 4 | 245  | 263              |
| 11 | 5 | 0 | 241  | 243  | 8  | 2 | 2   | 521   | 507  | 9  | 5 | 4 | 281  | 286              |
| 6  | 6 | 0 | 512  | 520  | 12 | 2 | 2   | 323   | 320  | 8  | 6 | 4 | 285  | 281              |
| 12 | 6 | 0 | 218  | 196  | 3  | 3 | 2   | 535   | 529  | 6  | 5 | 5 | 567  | 585              |
| 9  | 7 | 0 | 263  | 264  | 5  | 3 | 2   | 597   | 594  | 7  | 6 | 5 | 227  | 248              |
| 11 | 7 | 0 | 379  | 364  | 7  | 3 | 2   | 304   | 284  | 8  | 6 | 6 | 495  | 524              |
| 8  | 8 | 0 | 777  | 768  | 11 | 3 | 2   | 250   | 232  | 9  | 7 | 6 | 370  | 367              |
| 2  | 1 | 1 | 192  | 197  | 13 | 3 | 2   | 276   | 272  | 9  | 9 | 6 | 316  | 316              |
| 6  | 1 | 1 | 833  | 824  | 6  | 4 | 2   | 447   | 419  |    |   |   |      |                  |
| 10 | 1 | 1 | 487  | 472  | 10 | 4 | 2   | 506   | 475  |    |   |   |      |                  |
|    |   |   |      |      |    | Т | AB  | le II |      |    |   |   |      |                  |
|    | ~ |   |      |      | ~  |   |     |       | -    |    |   |   |      |                  |

| Positio | onal and Tem | iperature Pai | RAMETERS OF | $La_2Te_3$  |
|---------|--------------|---------------|-------------|-------------|
| Atom    | x            | $\sigma(x)$   | B, Å.2      | $\sigma(B)$ |
| La      |              |               | 1.20        | 0.08        |
| Te      | 0.0748       | 0.0002        | 0.96        | 0.08        |

(6) T. H. Ramsey, H. Steinfink, and H. J. Weiss, Inorg. Chem., 4, 1154 (1965).

<sup>(1)</sup> Research sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant No. 62-237.

<sup>(2)</sup> K. Meisel, Z. anorg. allgem. Chem., 240, 300 (1939).

<sup>(3)</sup> W. H. Zachariasen, Acta Cryst., 2, 57 (1949).

<sup>(5)</sup> F. L. Carter, Proceedings, Fourth Rare Earth Conference, Phoenix, Ariz., 1964; to be published.

<sup>(7)</sup> J. Flahaut, M. Guittard, M. Patrie, M. P. Pardo, S. M. Golobi, and L. Domange, *Acta Cryst.*, **19**, **14** (1965).



Figure 1.—Eightfold coordination of La in  $La_2Te_3$ . The coordination polyhedron can be considered as composed of two tetrahedra, one elongated and one flattened, or as an irregular octaverticon.

also calculated as a function of composition over the solid solution range La $_{8}$ Te $_{4}$  to La $_{2}$ Te $_{3}$ , and the smallest value occurred for the composition La $_{2}$ Te $_{3}$  for which the crystals had been originally selected.

#### **Discussion of Structure**

There are two different La–Te bond distances,  $3.244 \pm 0.0028$  Å. and  $3.418 \pm 0.0028$  Å., in the structure. The coordination polyhedron around La can be described in terms of two tellurium tetrahedra, an elongated one formed by atoms 6, 7, 3, 5 and a flat one formed by atoms 2, 8, 9, 4, Figure 1, or by the irregular octaverticon shown in Figure 1. Surrounding one La are eight other lanthanum atoms, all at a distance of 4.50 Å. from the central atom. The anion in this structure is coordinated to six lanthanum atoms which form a distorted octahedron.

Pauling's relation for bond length and bond number,  $D_n = D_1 - 0.6 \log n$ , was used to determine the relative strengths of the LaTe bonds. The term  $D_1$  represents the sum of empirically derived metallic single bond radii and the values given by Pauling are 1.69 and 1.37 Å. for La and Te, respectively<sup>8</sup>;  $D_n$  is the observed bond length and n is the bond number. In Table III indicated electrostatic bond summations utilizing the derived parameter x = 0.075 are compared with those fixed by the idealized parameter of 1/12. The sum of the bond numbers for each atom is very close to the formal valence when x = 0.075. It should be noted that these calculations do not take into account the missing lanthanum atoms in the deficient La2Te3 structure. One out of every nine La is absent and this produces a vacancy in the Te polyhedron. The polyhedra associated with the eight La closest neighbors to any given La polyhedron share with it one face from one or another of two nonequivalent sets of four triangular faces. Any instance of vacancy in two adjacent polyhedra would reduce electrostatic

| TABLE III                                      |  |  |  |  |  |  |  |
|------------------------------------------------|--|--|--|--|--|--|--|
| VE BOND STRENGTHS OF La-Te Bonds in $La_2Te_3$ |  |  |  |  |  |  |  |

| Central | Coordinating |                 |                   |  |  |
|---------|--------------|-----------------|-------------------|--|--|
| atom    | atoms        | $D_n$           | n                 |  |  |
|         |              | x = 0.075       |                   |  |  |
| La      | 4 Te         | 3.24            | 0.5               |  |  |
|         | 4 Te         | 3.42            | 0.25              |  |  |
|         | /            |                 | $\Sigma n = 3.0$  |  |  |
| Te      | 3 La         | 3.24            | 0.5               |  |  |
|         | 3 La         | <b>3</b> , $42$ | 0.25              |  |  |
|         |              |                 | $\Sigma n = 2.25$ |  |  |
|         |              | x = 0.083       |                   |  |  |
| La      | 8 Te         | 3.33            | 0.354             |  |  |
|         |              |                 | $\Sigma n = 2.83$ |  |  |
| Te      | 6 La         | 3.33            | 0.354             |  |  |
|         |              |                 | $\Sigma n = 2.12$ |  |  |

RELATIV

bond summations about some Te atoms to 1.25 (2, 4, 8, or 9 in Figure 1). When no two adjacent polyhedra are vacant, the minimum sum is 1.75. It seems probable that vacant sites are in fact ordered, at least locally. The over-all average Te bond number sum is 2. Occupancy of the polyhedra of the eight nearest La neighbors and the four next near La neighbors achieves this average in a smallest possible volume, *i.e.*, three-fourths of one unit cell.

Holtzberg, Okaya, and Stemple<sup>9</sup> have reported a single crystal determination of the positional parameter in the compound  $Gd_2Se_3$  of 0.0715 and in the compound  $La_3Se_4$  (which contains no vacancies) of 0.075. These findings indicate that in rare earth compounds having a thorium phosphide structure considerable covalent bonding exists and the variable positional parameter deviates from the ideal value of 0.083 and is near 0.075.

(9) F. Holtzberg, Y. Okaya, and N. Stemple, Abstracts, American Crystallographic Association Meeting, Gatlinburg, Tenn., 1965.

> CONTRIBUTION FROM SHELL DEVELOPMENT COMPANY, EMERVVILLE, CALIFORNIA

## Reaction Product from Rhodium Trichloride and Acrylonitrile

### By K. C. DEWHIRST

#### Received September 16, 1965

The reduction of rhodium trichloride by ethanol in the presence of olefins<sup>1-3</sup> has frequently been employed for the preparation of  $\pi$  complexes of rhodium(I). We now wish to report that the use of acrylonitrile in this reaction gives rise to a stable  $\sigma$  complex of rhodium(III). Only a few organorhodium complexes of this general type are known<sup>4,5</sup> and have been prepared by different routes.

- (1) J. Chatt and L. M. Venanzi, J. Chem. Soc., 4735 (1957).
- (2) R. Cramer, Inorg. Chem., 1, 722 (1962).
- (3) G. N. Schrauzer and K. C. Dewhirst, J. Am. Chem. Soc., 86, 3265 (1964).
- (4) R. F. Heck, *ibid.*, 86, 2796 (1964).
- (5) J. Chatt and A. E. Underhill, J. Chem. Soc., 2088 (1963).